Impact of Temperature and Non-Gaussian Statistics on Electron Transfer in Donor-Bridge-Acceptor Molecules.
نویسندگان
چکیده
A combination of experimental data and theoretical analysis provides evidence of a bell-shaped kinetics of electron transfer in the Arrhenius coordinates ln k vs 1/T. This kinetic law is a temperature analogue of the familiar Marcus bell-shaped dependence based on ln k vs the reaction free energy. These results were obtained for reactions of intramolecular charge shift between the donor and acceptor separated by a rigid spacer studied experimentally by Miller and co-workers. The non-Arrhenius kinetic law is a direct consequence of the solvent reorganization energy and reaction driving force changing approximately as hyperbolic functions with temperature. The reorganization energy decreases and the driving force increases when temperature is increased. The point of equality between them marks the maximum of the activationless reaction rate. Reaching the consistency between the kinetic and thermodynamic experimental data requires the non-Gaussian statistics of the donor-acceptor energy gap described by the Q-model of electron transfer. The theoretical formalism combines the vibrational envelope of quantum vibronic transitions with the Q-model describing the classical component of the Franck-Condon factor and a microscopic solvation model of the solvent reorganization energy and the reaction free energy.
منابع مشابه
Electron Paramagnetic Resonance Studies of the Effects of π-donor Ligand and B18N18 Nanoring Field on Energy Gaps
To investigation non-bonded interaction of the [CuF4]2- complex inside nanoring, we focus on the single wall boron-nitride B18N18 nanoring. Thus, the geometry of B18N18 nanoring has been optimized by B3LYP method with EPR-II basis set and geometry of the [CuF4]2- complex has been optimized at B3LYP method with Def2-TZVP basis set and Stuttgart RSC 1997 Effective Core Potential. Also electronic ...
متن کاملElectron Paramagnetic Resonance Studies of the Effects of π-donor Ligand and B18N18 Nanoring Field on Energy Gaps
To investigation non-bonded interaction of the [CuF4]2- complex inside nanoring, we focus on the single wall boron-nitride B18N18 nanoring. Thus, the geometry of B18N18 nanoring has been optimized by B3LYP method with EPR-II basis set and geometry of the [CuF4]2- complex has been optimized at B3LYP method with Def2-TZVP basis set and Stuttgart RSC 1997 Effective Core Potential. Also electronic ...
متن کاملNon-Gaussian statistics of binding/unbinding events and the energetics of electron transfer reactions
We describe a model of electron transfer reactions affected by local binding to the donor or acceptor sites of a particle in equilibrium with the solution. The statistics of fluctuations of the donor–acceptor energy gap caused by binding/unbinding events are non-Gaussian, and the resulting free energy surfaces of electron transfer are non-parabolic. The band-width of the charge-transfer optical...
متن کاملAbsorption Spectra and Electron Injection Study of the Donor Bridge Acceptor Sensitizers by Long Range Corrected Functional
Ground state geometries have been computed using Density Functional Theory (DFT) at B3LYP/6-31G(d,p) level of theory. The excitation energies and spectroscopic parameters have been computed using Long range Corrected (LC) hybrid functional by Time Dependent Density Functional Theory (TDDFT) with LC-BLYP level of theory. The Polarizable Continuum Model (PC...
متن کاملNon-Condon theory of nonadiabatic electron transfer reactions in V-shaped donor–bridge–acceptor complexes
The rate of nonadiabatic long-distance electron transfer ~ET! is derived for the direct and superexchange electronic coupling between the donor and acceptor. The model takes into account a non-Condon thermal modulation of the electronic coupling through the interaction of the system transition dipoles with the polarization fluctuations of the solvent. Going from a linear donor– bridge–acceptor ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The journal of physical chemistry. B
دوره 121 12 شماره
صفحات -
تاریخ انتشار 2017